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Abstract

In this paper we explicitly compute the transformation that maps the generic
second-order differential equation y ′′ = f (x, y, y ′) to the Painlevé first
equation y ′′ = 6y2 +x (resp. the Painlevé second equation y ′′ = 2y3 + yx + α).
This change of coordinates, which is a function of f and its partial derivatives,
does not exist for every f ; it is necessary that the function f satisfies certain
conditions that define the equivalence class of the considered Painlevé equation.
In this work we will not consider these conditions and the existence issue is
solved on line as follows: if the input equation is known then it suffices
to specialize the change of coordinates on this equation and test by simple
substitution if the equivalence holds. The other innovation of this work lies in
the exploitation of discrete symmetries for solving the equivalence problem.

PACS number: 02.30.Jr

1. Introduction

By fiber-preserving transformations we mean analytical transformations of the form

C
2 � (x, y) → (x̄(x), ȳ(x, y)) ∈ C

2

with the condition x̄x ȳy �= 0 expressing their local invertibility. These transformations form a
Lie pseudo-group with

x̄y = 0, x̄x ȳy �= 0 (1.1)

as a defining system.

* The research was supported in part by the Czech Ministry of Education, Youth and Sports within the project
LC06002.
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As indicated in the abstract, our aim is to explicitly compute the transformation of this
form that maps the second-order equation

Ef : y ′′ = f (x, y, y ′),

where y ′ = d
dx

y(x), to the first Painlevé equation (resp. to the second Painlevé equation). This
change of coordinates, which is clearly a function of f and its partial derivatives, does not
exist for every f ; it is necessary that the function f satisfies certain conditions that define the
equivalence class of the considered Painlevé equation. Comparing to [KLS85] and [HD02],
the existence issue is solved here on line as follows: if the input equation is known then it
suffices to specialize the change of coordinates on this equation and test by simple substitution
if the equivalence holds.

The calculations of transformation candidates are based on the following result [DP07].
Given a Lie pseudo-group of transformations � and denote by SEf ,� the symmetry pseudo-
group of the equation Ef w.r.t. � i.e., SEf ,� = � ∩ Diffloc(Ef ). In [DP07], we proved the
following.

(i) The number of constants appearing in the change of coordinates is exactly the dimension
of SEf̄ ,�. Also, we have dim(SEf ,�) = dim(SEf̄ ,�).

(ii) In the particular case when dim(SEf̄ ,�) = 0, the transformation ϕ is algebraic in f and its
partial derivatives and it is obtained without solving differential equations. The degree of
this transformation ϕ is exactly equal to the finite value card (SEf̄ ,�).

The last case is exactly what happens when Ef̄ is one of the Painlevé equations and � is
the pseudo-group of fiber-preserving transformations or more generally point transformations.
Indeed, the classical Lie analysis shows that the point symmetry pseudo-group of each one of
the Painlevé equations is zero dimensional. Moreover, according to the fact that the unique
transformations that preserve the singularity structure are homographic transformations, one
can show by straightforward computations that the point symmetry pseudo-group of Painlevé
one is ⎧⎪⎨

⎪⎩
x̄ = x

ȳ2

y2
,

ȳ5 = y5,

(1.2)

and ⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

x̄ = x
ȳ2

y2
,

ȳ3 = ᾱ

α
y3,

ᾱ2 = α2,

(1.3)

for Painlevé two when α �= 0 and⎧⎪⎨
⎪⎩

x̄ = x
ȳ2

y2
,

ȳ6 = y6,

(1.4)

when α = 0.
Fiber-preserving transformations are suitable when dealing with Painlevé equations. In

particular, such transformations preserve the integrability in the sense of Poincaré [CM08].
However, since Painlevé equations lie in the class of equations of the form

y ′′ = A(x, y) + B(x, y)y ′ + C(x, y)y ′2 + D(x, y)y ′3

2
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which is invariant under point transformations1, we consider in the last section of this paper
the equivalence under these more general transformations.

2. Building the invariants

Let (x, y, p = y ′) be a system of local coordinates of J1 = J1(C, C), the space of first-order
jets of functions C � x → y(x) ∈ C [Olv93]. Two scalar second-order ordinary equations

Ef : y ′′ = f (x, y, y ′) and Ef̄ : ȳ ′′ = f̄ (x̄, ȳ, ȳ ′)

are said to be equivalent under a point transformation ϕ if its first prolongation (to J1) maps
the contact forms{

ω1 = dy − p dx

ω2 = dp − f (x, y, p) dx

to the contact forms{
ω̄1 = dȳ − p̄d̄x

ω̄2 = dp̄ − f̄ (x̄, ȳ, p̄) dx̄

up to an invertible 2 × 2-matrix of the form(
a1 0

a2 a3

)
.

The ai are functions from J1 to C. To encode equivalence under fiber-preserving
transformations (i.e., taking into account the Lie equations (1.1)) we must have

ϕ∗ dx̄ = a4 dx

for a certain function a4 : J1 → C. Summarizing, two second-order differential equations Ef

and Ef̄ are equivalent under a fiber-preserving transformation ϕ if and only if

ϕ∗

⎛
⎝ dȳ − p̄ dx̄

dp̄ − f̄ (x̄, ȳ, p̄) dx̄

dx̄

⎞
⎠ =

⎛
⎝a1 0 0

a2 a3 0
0 0 a4

⎞
⎠

⎛
⎝ dy − p dx

dp − f (x, y, p) dx

dx

⎞
⎠ .

For this problem, Cartan’s equivalence method [Olv95] gives three fundamental invariants⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

I3 = −fpppa4

2a1
2

,

I2 = fyp − Dxfpp

2a1a4
,

I1 = (2fyy − Dxfyp − fppfy + fypfp)a1 + (−fyp + Dxfpp)a4a2

2a1
2a4

2

and six invariant derivations defined on certain manifold M̃ , fibered over J1, with local
coordinates de (x, y, p, a1, a2, a4). Here, Dx = ∂x + p∂y + f ∂p is the Cartan vector field.

When specializing on the Painlevé equations, the two fundamental invariants I2 and I3

vanish. On this splitting branch, the application of the Jaccobi identity to the final structure

1 Indeed, as remarked by Cartan [Car24], the above equation can always be regarded as the geodesics equation of a
projective structure on a surface with local coordinates x and y and thus invariant under point transformations.

3
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equations shows that among the six invariant derivations only two can produce new invariants.
These two derivations are⎧⎪⎪⎨

⎪⎪⎩
X1 = 1

a1
∂y − a2a4

a1
2

∂p − 1

2
fpp∂a1 − 1

2

fpy

a4
∂a2 ,

X3 = 1

a4
∂x +

p

a4
∂y +

f

a4
∂p + a2∂a1 − fya1

a4
2

∂a2 +
2a2a4 + fpa1

a1
∂a4 .

Notation 1. In the following, I1;j ···k denotes the differential invariant Xk · · ·Xj(I1). For
instance, the invariant I1;33 is obtained by differentiating twice the fundamental invariant I1

with respect to invariant derivation X3.

3. The first Painlevé equation y′′ = 6y2 + x

Since the associated fiber-preserving symmetry Lie pseudo-group is zero dimensional, this
justifies the following lemma:

Lemma 1. The specialization of the invariants

I1, I1;3, I1;33,
I1;333

I1;33
,
I1;3333

I1;33
− 43

120
I1;33,

I1;33333

I1;33
− 5

4
I1;33

on the first Painlevé equation gives six invariants functionally independent defined on M̃ .

The problem with the above invariants is that they do depend on extra parameters a1, a2 and a4.
Fortunately, in our zero-dimensional case, we can normalize (i.e., eliminate) these parameters
by setting

I1 = −12, I1;3 = 0,
I1;333

I1;33
= 1. (3.1)

Now substituting the values of the parameters in the remaining invariants gives us, due again
to our zero-dimensional case, three functionally independent invariants that do not depend
on the extra parameters. Writing the equality of the invariants and simplifying the obtained
system, by computing a characteristic set [Kol73, BLOP95], give an algebraic transformation
of degree 5: ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

p̄ = 129600
(5I1;33

2 + 4I1;33333)

I1;33
3 ȳ4

x̄ = −6
(120I1;3333 + 43I1;33

2)

I 2
1;33

ȳ2,

ȳ5 = − 1

23328000

I1;33
5

(5I1;33
2 + 4I1;33333)2

.

(3.2)

In these formulae the invariants are normalized using (3.1), that is, they do not depend on
the extra parameters. According to (ii) of the introduction and (1.2), we have the following
theorem.

Theorem 1. A second-order differential equation Ef is equivalent to the first Painlevé equation
by a fiber-preserving transformation if and only if this transformation is given by (3.2) and
the normalization (3.1).

4
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Let us explain how theorem 1 can be used in practice. Consider the following equations

y ′′ = c
y ′2

y
+

1

y
(y4 + x), (3.3)

and

y ′′ = c
y ′2

y
+ y(y4 + x). (3.4)

The question is to determine the values of the parameter c for which the above equations can
be mapped to the first Painlevé equation (and compute the equivalence transformation when
the equivalence holds).

First of all, the fact that the derived invariants I1;1 vanish on the first Painlevé equation
restricts the possible values of c to {−1, 3} for the first equation and to {−3, 5} for the second
equation.

The second step is to specialize (3.2) on the given equation to obtain transformation
candidates. In step 3, we have to check whether the pullback of the first Painlevé equation
w.r.t. these candidates is exactly the considered equation.

In the case of equation (3.3), the specialization yields⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

p̄ = 36
ȳ4p

y7
,

x̄ = 6
ȳ2x

y4
,

ȳ5 = 1

108
y10

(3.5)

for c = −1 and⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

p̄ = −864
ȳ4y5(625x5 − 2079)(−25yx3 + 250px4 + 21y3)

(50x3 + 3y2)4
,

x̄ = 6
(2500x5 − 891)y4ȳ2

(50x3 + 3y2)2
,

ȳ5 = − 1

31104

(50x3 + 3y2)5

y10(625x5 − 2079)2

(3.6)

for c = 3. The third step shows that the equivalence holds only for c = −1 and the equivalence
transformation is (3.5). We can also deduce, according to (ii) in the introduction, that the
cardinal of the fiber-preserving (point) symmetry group of equation (3.3) with c = −1 is equal
to 10.

The same calculations show that equation (3.4) can not be mapped to the first Painlevé
equation. In particular, we have a division by zero error in step 2 for c = 5. Warning: this
error does not mean that the method failed. In fact it is part of the method and implies that no
equivalence transformation exists.

Time estimates are given in the tables where P1 refers to the first Painlevé equation.

4. The second Painlevé equation y′′ = 2y3 + xy + α

Again, due to the zero dimensionality, there exist seven invariants defined on the manifold of
local coordinates (x, y, p, a1, a2, a4, α) such that when specialized, on Painlevé two, they give
exactly seven functionally independent functions. For instance, one can take the invariants
I1, I1;3, I1;31, I1;33, I1;331, I1;3331 and I1;33311. We normalize a1, a2 and a4 by setting

I1 = −12, I1;3 = −12, I1;31 = 0, (4.1)

5
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Table 1. Time estimates (in seconds) for y′′ = c
y′2
y

+ 1
y
(y4 + x).

Computation of transformation candidates Checking equivalence with P1

c = −1 0.15 (yes) 0.04
c = 3 2.13 (no) 0.13

Table 2. Time estimates (in seconds) for y′′ = c
y′2
y

+ y(y4 + x).

Computation of transformation candidates Checking equivalence with P1

c = −3 0.35 (no) 0.03
c = 5 Division by zero error (no) 0.00

and as in the previous section, we obtain

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

p̄ = 1

6

(
I1;33311(I1;3331 + 4032)

I1;33311I1;33 − 3096576 − 4032I1;331

)
ȳ2ᾱ,

x̄ = −
(

16 +
1

72
I1;331

)
ȳ2,

ȳ3 = 48384
ᾱ

I1;33311I1;33 − 3096576 − 4032I1;331
,

ᾱ2 = − 1

112I1;33311(16257024 + 8064I1;3331 + I1;3331
2)

(I1;33311
2I1;33

2

− 8064I1;33311I1;33I1;331 − 6193152I1;33311I1;33

+ 9588782923776 + 24970788864I1;331 + 16257024I1;331
2).

(4.2)

when α �= 0 and⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

p̄ = 1

290304
I1;33311(4032 + I1;3331)ȳ

5,

x̄ = − 1

72
(1152 + I1;331)ȳ

2,

ȳ6 = −20901888
1

I1;33311(4032 + I1;3331)2
,

(4.3)

when α = 0. The comparison with the symmetry pseudo-groups (1.3) and (1.4) proves the
following theorem.

Theorem 2. A second-order differential equation can be mapped to the second Painlevé
equation y ′′ = 2y3 + yx + α by a fiber-preserving transformation if and only if this
transformation is given by (4.2) if α �= 0 and by (4.3) otherwise with the normalization
(4.1) in both cases.

Let us remark that (4.3) can be obtained from (4.2) (as well as (1.4) from (1.3)) by eliminating
the ᾱ and taking into account the functional dependence between the invariants resulting from
ᾱ = 0. Nevertheless, it is safer to separate the two cases (α �= 0 and α = 0).

6
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5. Equivalence under point transformation

The equivalence problem under the more general point transformations naturally arises since
Painlevé equations belong to the class of equations of the form

y ′′ = A(x, y) + B(x, y)y ′ + C(x, y)y ′2 + D(x, y)y ′3

which is invariant under point transformations. In this case our starting Pfaffian system is

ϕ∗

⎛
⎜⎝

dȳ − p̄ dx̄

dp̄ − f̄ (x̄, ȳ, p̄) dx̄

dx̄

⎞
⎟⎠ =

⎛
⎜⎝

a1 0 0

a2 a3 0

a4 0 a5

⎞
⎟⎠

⎛
⎜⎝

dy − p dx

dp − f (x, y, p) dx

dx

⎞
⎟⎠

for which we normalize a3 and prolong to obtain involution and four fundamental invariants
defined on an eight-dimensional manifold. For the above class, only two invariants are not
identically zero:

K1 = (6fyy − 4Dxfyp + Dx
2fpp − 3fyfpp + 4fypfp − Dxfppfp)/(a1a5

2),

K2 = (2fyfpppa5 + 4fypfpa4 − Dxfppfpa4 − 3fyfppa4 − a5fppfyp + a5fppDxfpp

+ 6a4fyy + a4DxDxfpp − a5Dxfpppfp − a5fpppDxfp − 4a4Dxfyp

− 2fyypa5 + 2a5Dxfypp − a5DxDxfppp)/(a5
2a1

2).

As in the fiber-preserving case, only two invariant derivations X1 and X3 (one page long) are
needed.

Theorem 3. A second-order ordinary differential equation y ′′ = f (x, y, y ′) is equivalent

(i) to the first Painlevé equation y ′′ = 6y2 + x under a point transformation if and only if this
transformation is given by⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

p̄ = 5

1056

(21535113K1;33333 + K1;33313
3)

K1;33313
2 ȳ4,

x̄ = − 6
(29335112K1;3333 + 43K1;33313

2)

K1;33313
2 ȳ2,

ȳ5 = − 88

375

K1;33313
5

(21535113K1;33333 + K1;33313
3)2

(5.1)

with the normalization

K1 = −12, K2 = 0, K1;1 = 0, K1;3 = 0, K1;33/K1;333 = 720.

(ii) to the second Painlevé equation y ′′ = 2y3 + xy + α under a point transformation if and
only if this transformation is given by⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

p̄ = − 1

18

K2;3(15K2;3K1;33 − 216000 + 4032K2;3 − 450K1;331 − 50K2;3K1;333)

25K2;3K1;33 − 115200 + 1728K2;3 − 150K1;331
ȳ2ᾱ,

x̄ = 1

3600
(25K2;3K1;33 + 336K2;3 − 57600 − 50K1;331)ȳ

2,

ȳ3 = −1800
ᾱ

25K2;3K1;33 − 115200 + 1728K2;3 − 150K1;331
,

ᾱ2 = −108
(25K2;3K1;33 − 115200 + 1728K2;3 − 150K1;331)

2

K2;3(15K2;3K1;33 − 216000 + 4032K2;3 − 450K1;331 − 50K2;3K1;333)2

(5.2)

7



J. Phys. A: Math. Theor. 42 (2009) 125201 R Dridi

when α �= 0 and⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

p̄ = − 1

16200
K2;3(576K2;3 + 25K2;3K1;333 + 30K2;3K1;33 − 64800)ȳ5,

x̄ = 1

1080
(5K2;3K1;33 − 5760 − 72K2;3)ȳ2,

ȳ6 = − 87480000

K2;3(576K2;3 + 25K2;3K1;333 + 30K2;3K1;33 − 64800)2

(5.3)

when α = 0, with the normalization

K1 = −12, K2 = 0, K1;1 = 0, K1;3 = 0, K2;3/K1;31 = −5/24.

Example. Let us terminate with considering the equivalence of the two equations (3.3) and
(3.4) with the second Painlevé equation under point transformations. Here, computations are
done with arbitrary c.

Equation (3.3). The specialization of (5.2) on this equation yields (after 0.512 s) a
transformation candidate depending on c and which is too long to include in this paper.
The variable x̄ does not depend on p in only two cases c ∈ {−1, 3} and these two values return
a division by zero error when computing the other components. The same thing happens with
the specialization of (5.3) on (3.3). Thus, equation (3.3) can not be equivalent to the second
Painlevé equation under point transformations.

Equation (3.4). The specialization of (5.2) on this equation gives the following transformation
(in 1.11 s):⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

p̄ = 1

36

(c + 3)(c − 2)2p

(1 + c)(c − 5)y12
× (9y3c + 66y6p + · · · + 27y3)ᾱȳ2,

x̄ = 2

3

(−27y6 + 3y2xc − 2c2p2 − 24y6c + 3y6c2 + 5cp2 − 18y2x + 6p2 − c3p2 + 3y2xc2)

(c − 5)y6

× ȳ2,

ȳ3 = 1

16

(c − 5)

1 + c
ᾱ,

ᾱ2 = 1728
(5 − c)(1 + c)2

(c + 3)(c − 2)2
y18 × (−9y3c − 66y6p + 54y2px + 18y6c2p − 48y6pc

+ 18y2xc2p + 2c3p3 − 2p3c2 + 72y2pxc − 34p3c − 30p3 − 27y3)−2.

For the particular values of c for which x̄ does not depend on p we obtain division by zero
errors when computing the other components and then equation (3.4) can not be mapped to
Painlevé two with α �= 0. However, the specialization of (5.3) on (3.4) gives⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

p̄ = −4

9

(c − 2)2p(c + 3)(18xy2pc2 − 90py6 + · · · + 18y6pc2)

(c − 5)2y12
ȳ5,

x̄ = 2

3

(−23y6 + 3y2xc − 2c2p2 − 20y6c + 3y6c2 + 5cp2 − 18y2x + 6p2 − c3p2 + 3y2xc2)

(c − 5)y6

× ȳ2,

ȳ6 = −27

4

(c − 5)3

(c + 3)(c − 2)2
y18 × (18xy2pc2 − 90py6 − 9y3c + 54pxy2 − 27y3 + 72pcxy2

− 34p3c − 72pcy6 + 2c3p3 − 30p3 − 2p3c2 + 18y6pc2)−2

8
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which is point transformation only when c = −1. In this case, the resulting transformation is

p̄ = 4
ȳ5p

y9
, x̄ = 2

ȳ2x

y4
, ȳ6 = 1/4y12

and this maps equation (3.4) to Painlevé two y ′′ = 2y3 + xy (with α = 0).
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[DP07] Dridi R and Petitot M 2007 Towards a new ODE solver based on Cartan’s equivalence method ISSAC

’07: Proc. Int. Symp. 2007 on Symbolic and Algebraic Computation (New York, NY, USA) (New York:
ACM) pp 135–42

[HD02] Hietarinta J and Dryuma V 2002 Is my ODE a Painlevé equation in disguise? J. Nonlin. Math. Phys.
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